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Abstract. The reaction pn → dφ is studied within a covariant boson exchange model. The behavior of
polarization observables being accessible in forthcoming experiments near threshold is predicted.

PACS. 13.75.-n Hadron-induced low- and intermediate-energy reactions and scattering (energy less than
or equal to 10 GeV) – 14.20.-c Baryons (including antiparticles) – 21.45.+v Few-body systems

1 Introduction

Data on elementary reactions with neutrons are scarce
since either they must be extracted, with some efforts
and even mostly with some model-dependent assumptions,
from reactions on nuclei, or a tagged neutron beam (cf. [1])
is used. The spectator technique [2,3] represents an ex-
ample of how one can use a deuteron target to isolate
quasi-free reactions at the neutron. It is based on the
idea to measure the spectator proton (psp) at fixed (or
slightly varying) beam energy in the meson (M) produc-
tion reactions pd → dMpsp, thus exploiting the internal
momentum spread of the neutron (n) inside the deuteron
(d). In such a way one gets access to quasi-free reactions
pn → dM if, in experiments with the deuteron target at
rest, the spectator proton has momenta of the order of
50 · · · 150 MeV/c.

An experimental investigation of the near-threshold
(pseudo)scalar and vector meson production at the neu-
tron becomes therefore feasible. Indeed, at COSY the
ANKE spectrometer set-up can be used, in particular, for
studying the a0, ω and φ production with the internal
beam at a “neutron target” [3]. This offers the possibility
to enlarge the data basis on hadronic reactions and to ad-
dress special issues. For instance, there is already a large
body of data which can be used for a systematic study of
the OZI rule violation via ω and φ production in πN and
pp reactions (cf. [4] for a reanalysis) and in p̄p annihila-
tion (cf. [5,6] for theoretical analyses) as well. OZI rule
violations are of interest with respect to possible hints to
a significant ss̄ admixture in the proton, as supported by
the pion-nucleon Σ term [7,8] and interpretations of the
lepton deep-inelastic scattering data [9]. Besides the im-
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pact on hadron phenomenology the origin of the OZI rule
has also a link to QCD [10,11].

In the reactions pp → ppM or pn → pnM the final-
state interaction among the outgoing nucleons plays a role.
Therefore, the meson production process is a convolution
of the “pure production process” and the final-state in-
teraction. In the case of the reaction pn → dM one has
one well-defined final state of the nucleons and may better
constrain the elementary production amplitude.

Finally, we mention that in the reactions pp → ppM ,
pn → pnM and pn → dM the conservation laws and
symmetry principles determine a different dynamics near
threshold, which needs to be investigated to allow a firm
understanding of the reactions and the systematics of the
OZI rule violation.

Given this motivation, in [12,13] the reaction pn → dV
with V = ω, φ has been studied in some detail. (pn → dS
with S = a+

0 , η, η′ is considered in [14].) In [12] the cross-
sections and angular distributions are elaborated as a
function of the excess energy within a two-step model. The
same observables are evaluated in [13] within the frame-
work of a boson exchange model with emphasis on the
ratio of cross-sections σpn→dφ/σpn→dω being of direct rel-
evance for the OZI rule violation.

Since at COSY the proton beam is polarized and also
the use of polarized targets is envisaged, we extend the
previous studies [12,13] to make, for the first time, a pre-
diction of polarization observables in the reaction pn →
dφ. The set-up of the ANKE experiment at COSY can
directly identify the φ-meson via its K+K− decay chan-
nel. We present the asymmetry, tensor-analyzing power,
and p-φ spin-spin correlations. In doing so, we use our
previous one-boson exchange model [15] with parameters
adjusted to available near-threshold data on φ production
in pp and πp reactions and combine this with our previous
studies [15–17] employing a solution of the deuteron wave
function within the Bethe-Salpeter (BS) formalism. In this
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Fig. 1. The diagram for the process p(1) + n(2) = d + φ. G is
the scattering operator, and ξ∗ denotes the polarization vector
of the outgoing vector meson.

way, we derive a completely covariant approach which al-
lows to compute the invariant amplitude TNN→φd to be
used as input into more complex processes.

Our paper is organized as follows. In sect. 2 we present
the theoretical framework and elaborate the basic equa-
tions. The numerical results and their discussion are pre-
sented in sect. 3. The summary can be found in sect. 4.

2 The model

The invariant differential cross-section of the reaction
pn → dφ reads

dσ

dt
=

1
16π s(s−4m2)

1
4

∑
s1,s2

∑
Mφ,Md

|TMφMd
s1s2 (s, t)|2, (1)

where s is the square of the total energy of the col-
liding particles p and n in the center of mass, t is
the square of the transferred four-momentum from pro-
ton to deuteron, m is the nucleonic mass, s1, s2,Mφ

and Md denote the spin projections on a given quan-
tization axis, and T stands for the invariant amplitude.
The general form of T may be written as (cf. fig. 1)
T

MφMd
s1s2 (s, t) = 〈 d,Md |Ĝµ ξ∗µ

Mφ
|1, 2 〉, where ξµ

Mφ
is the

polarization four-vector of the φ-meson. The scattering
operator Ĝ represents a four-vector in Minkowski space,
and a 16 ⊗ 16 component object in the spinor space of
nucleons. The deuteron is described as a 16 component
BS amplitude Φ(1, 2) which is defined as a matrix el-
ement of a time-ordered product of two nucleon fields
ψ(x) by Φαβ(1, 2) = 〈 d|T

(
ψα(1)ψβ(2)

)
|0 〉 satisfying the

BS equation. By defining another scattering operator via
Ô = Ĝµ ξµ∗

Mφ
the invariant amplitude reads

T
MφMd
s1s2 (s, t) = −i

∫
d4p

(2π)4
Φ̄αb
Md

(1′, 2′)

× Ôbc
αβ(12; 1′2′,Mφ)uc

s1
(1)uβ

s2
(2), (2)

where Φ̄αb
Md

(1′, 2′) is the conjugate BS amplitude in the
momentum space, p is the relative four-momentum of
the nucleons in the deuteron, and u(1) and u(2) denote
the Dirac spinors for the incident nucleons. Summation
over spin indices α, β, b, c = 1 · · · 4 occurring pairwise is

supposed. The operator Ôbc
αβ(12; 1′2′,Mφ) is a scattering

operator describing the φ-meson production in the final
state. This operator acts in the spinor space of protons and
neutrons separately; the upper (Latin) and lower (Greek)
spinor indices refer to protons and neutrons, respectively.
The first indices, b and α, form an outer product of two
columns, whereas the second ones, c and β, form an outer
product of two rows. To specify explicitly the spinor struc-
ture we decompose the operator Ô in each of its indices
over the corresponding complete set of Dirac spinors, i.e.,

Ôbc
αβ(12; 1′2′,Mφ) =

1
(2m)4

×
4∑

r,r′,ρ,ρ′=1

A
Mφ

rr′,ρρ′(12; 1′2′)ub
r′(1′)ūc

r(1)ūβ
ρ (2)uα

ρ′(2′), (3)

where the coefficients A
Mφ

rr′,ρρ′(12; 1′2′) may be found by
using the completeness and orthogonality of the Dirac
spinors, ūr(p)ur′(p) = 2εrmδrr′ , yielding

A
Mφ

rr′,ρρ′(12; 1′2′) = εrεr′ερερ′ ūb
r′(1′) ūα

ρ′(2′)

× Ôbc
αβ(12; 1′2′,Mφ)uc

r(1)uβ
ρ (2), (4)

where εr = +1 for r = 1, 2 and εr = −1 for r = 3, 4.
Substituting (3) into (2) one obtains

T
MφMd
s1s2 (s, t) =

−i

(2m)2

∫
d4p

(2π)2
Φ̄αb
Md

(1′, 2′)

×
2∑

r,r′=1

A
Mφ

s1s2,rr′(12; 1′2′)uα
r′(2′)ub

r(1
′) =

i

(2m)2

2∑
r,r′=1

∫
d4p

(2π)2
(uα

r′(2′))T
γαα′
c

×
(
γα′α′′
c Φ̄α′′b

Md
(1′, 2′)

)
A

Mφ

s1s2,rr′(12; 1′2′)ub
r(1

′) =

i

(2m)2

2∑
r,r′=1

∫
d4p

(2π)4
A

Mφ

s1s2,rr′(12; 1′2′)

×v̄r′(2′) Ψ̄Md
(1′, 2′)ur(1′), (5)

where γc is the charge conjugation matrix, v̄r(2′) ≡
(ur(2′))T γc, and the new BS amplitude Ψ̄Md

(1′, 2′) ≡
γcΦ̄Md

(1′, 2′) now is a 4 ⊗ 4 matrix and represents the
solution of the BS equation written also in matrix form.
Note that in eq. (5), contrary to eq. (3), the summation
over the indices r, r′ is restricted to two values. The rea-
son is the following: In the matrix form, the partial BS
amplitudes explicitly contain projection operators onto ei-
ther positive- or negative-energy states [17] which select
from eq. (3) r, r′ = 1, 2 or r, r′ = 3, 4. The main contribu-
tion to the considered near-threshold process comes from
the positive-energy partial amplitudes S++ and D++. The
other six amplitudes have been neglected in the present
work due to their smallness within the near-threshold
kinematics (see, e.g. [17]). Then from the explicit expres-
sion of the S++ and D++ components [17] (cf. eq. (6)
below) one has in eq. (5) r, r′ = 1, 2.
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Fig. 2. Graphical representation of the operator Ô defined in (3) in the one-boson exchange approximation. Nucleons in the
initial and final states are represented by thin lines which are truncated by vertical dotted lines as to obtain an operator.
The exchanged π- and ρ-mesons are depicted by vertical dashed and thick lines, respectively. The four different contributions
correspond to different combinations of π0, π± and ρ0, ρ± exchanges.

For further evaluations of the amplitude (5) one
needs to specify an explicit form of the operator Ô.
By sandwiching the operator Ô in eq. (3) between two-
nucleon states (on-shell nucleons) one gets the amplitude
A

Mφ

rr′,ρρ′(12; 1′2′) of real processes of φ-meson production
in NN reactions. That means Ô can be constructed from
two parts: i) a part which coincides formally with the free
NN operator, however, with effective couplings which, in
general, can differ from the on-shell fixings and ii) other
additional off-shell terms vanishing, as the corresponding
matrix elements, in free NN scattering. Near the thresh-
old one may expect that the off-mass shell part plays a mi-
nor role and in what follows it can be neglected. Moreover,
in this region the effective constants (cut-off, couplings,
etc.) may be safely taken as in the free case. Then the
operator Ô follows from an effective meson-nucleon the-
ory with interaction Lagrangians for the πNN , ρNN , φρπ
vertices by calculating the relevant truncated Feynman di-
agrams with a φ-meson in the final state. In terms of strict
one-boson exchange contributions, the Feynman diagrams
can be grouped into two classes: the meson exchange di-
agram with internal meson conversion and diagrams with
direct emission of the φ-meson from a nucleonic line, the
nucleonic current diagrams. In refs. [13,15] parameter sets
have been found where the contributions from the nucle-
onic currents are negligibly small for the free NN → NNφ
processes. As a result, in the reaction pn → dφ such dia-
grams with nucleonic current emission can be omitted as
well, when using the corresponding parameter sets. Then
we are left with the exchange process with internal meson
conversion, and Ô can be represented by the four trun-
cated diagrams as depicted in fig. 2 with effective param-
eters taken, e.g., from [13,15]. Hence, having computed
these diagrams it is straightforward to obtain the coeffi-
cients A

Mφ

rr′,ρρ′(12; 1′2′) in (4). It is worth stressing here

that, if all particles were on mass shell, A
Mφ

rr′,ρρ′(12; 1′2′)
exactly coincides with the amplitude of the elementary
free process 1 + 2 → 1′ + 2′ + φ. However, in our case
this amplitude corresponds to a virtual subprocess of vec-
tor meson production with two off-shell nucleons in the
final state. The off-shellness of the final nucleons is consis-
tently taken into account by solving the full spinor-spinor
Bethe-Salpeter equation for the deuteron with a realistic
one-boson exchange kernel with both nucleons off-mass
shell.

Since our numerical solution [18] of the BS equation
has been obtained in the deuteron’s center of mass, all fur-

ther calculations will be performed in this system. First,
as depicted in fig. 1, we introduce the relevant kinematical
variables as follows: p1,2 are the four-momenta of incoming
nucleons, p′1,2 stand for the four-momenta of the internal
(off-shell) nucleons in the deuteron with p = (p′1 − p′2)/2;
ξMd

denotes the polarization four-vector of the deuteron.
In this notation the S++ and D++ partial BS amplitudes
in the deuteron’s rest system are of the form [17]

ΨS++

Md
(p′1, p

′
2) = N (k̂1+m)

1+γ0

2
ξ̂Md

(k̂2−m)φS(p0, |p|),

ΨD++

Md
(p′1, p

′
2) = − N√

2
(k̂1 + m)

1 + γ0

2

×
(

ξ̂Md
+

3
2|p|2 (k̂1−k̂2)(pξM )

)
(k̂2−m)φD(p0, |p|), (6)

where “̂ ” means contraction with Dirac matrices, and k1,2

are on-shell four-vectors related to the off-shell vectors p′1,2

as follows:

k1 = (Ep,p), k2 = (Ep,−p),

p′1 = (p′10,p), p′2 = (p′20,−p), Ep =
√

p2 + m2, (7)

and φS,D(p0, |p|) are the partial scalar amplitudes related
to the corresponding partial vertices as

φS,D(p0, |p|) =
GS,D(p0, |p|)(

1
2
Md − Ep

)2

− p2
0

. (8)

Md is the deuteron mass, and the normalization factor is
N =

{√
8π2E(E + m)

}−1
. To be explicit let us recall the

components of the polarization four-vector of a vector par-
ticle with four-momentum p = (E,p), polarization index
M = ±1, 0 and mass M as

ξM =
(

pξM
M

, ξM + p
pξM

M(E + M)

)
, (9)

where ξM is the polarization three-vector for the parti-
cle at rest with ξ+1 = − 1√

2
(1, i, 0), ξ−1 = 1√

2
(1,−i, 0),

ξ0 = (0, 0, 1). The above Dirac spinors, normalized as
ū(p)u(p) = 2m and v̄(p)v(p) = −2m, read

u(p, s) =
√

m + ε

(
χs

σp
m+εχs

)
,

v(p , s) =
√

m + ε

( σp
m+ε χ̃s

χ̃s

)
, (10)
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where χ̃s ≡ −iσyχs, and χs denotes the usual two-
dimensional Pauli spinor. In general, the BS amplitude
consists of eight partial components. In eqs. (5), (6) we
take into account only the most important ones, namely
the S and D partial amplitudes. The other six amplitudes
might become important only at high transferred mo-
menta [16,17], hence for the present near-threshold pro-
cess they may be safely disregarded. Therefore, r, r′ = 1, 2,
as already mentioned above. Substituting eqs. (6)-(10)
into (5) one obtains after some algebra

T
MφMd
s1s2 (s, t) =

−i√
8π

√
|Md| + 1

2∑
r,r′=1

∫
d4p

2Ep(2π)4
GS − GD

1√
2(

1
2Md − Ep

)2 − p2
0

×A
Mφ

s1s2,rr′(p1p2,p
′
1p

′
2) δr+r′,Md

+
3i√
16π

2∑
r,r′=1

∫
d4p

2Ep(2π)4
GD(

1
2Md − Ep

)2 − p2
0

×A
Mφ

s1s2,rr′(p1p2,p
′
1p

′
2)χ̃

+
r′ (σn)χr (nξ∗

Md
) . (11)

By closing the integration contour in the upper hemi-
sphere and picking up the residuum at p0 = Md/2 − Ep

and introducing the notion of the deuteron S and D wave
functions as

uS(p) =
GS(p0, |p|)

4π
√

2Md(2Ep − Md)
,

uD(p) =
GD(p0, |p|)

4π
√

2Md(2Ep − Md)
(12)

with 2
∫

d |p| |p|2(u2
S + u2

D) ≈ π, the final expression for
the amplitude may be written as

T
MφMd
s1s2 (s, t) =√
Md

4π

2∑
r,r′=1

∫
d3p

Ep(2π)2
A

Mφ

s1s2,rr′(p1,p2;p,−p)

×
{√

|Md| + 1
[
uS(p) − uD(p)√

2

]
δr+r′,Md

−3
uD(p)√

2

(
ξ∗
Md

n
)

χ̃+
r′(σn)χr

}
, (13)

where n is a unit vector parallel to p. The ampli-
tude eq. (13) has been obtained in the deuteron center-
of-mass system, hence it is not manifestly covariant.
However, since the transformation properties of the BS
amplitude under Lorentz-boosts are well known (see,
e.g. [17]) this amplitude may be written in any frame
of reference. In the chosen system it has the simplest
form. Moreover, in this system a direct non-relativistic
treatment of the obtained formulae becomes straight-
forward. Indeed, the above introduced BS wave func-
tions uS,D(p) are directly related to the non-relativistic
deuteron wave functions uNR

L (p) =
∫

uNR
L (r)jL(pr)rdr,

where uNR
L (r), L = 0, 2 are the usual S and D com-

ponents of the deuteron wave function obtained within
a realistic NN potential approach; for small values of
the internal momentum p the BS and non-relativistic
wave functions practically coincide [17]. Now, by observing
that

√
2

∑
〈 1
2ν1

1
2ν2 |1Md〉χ 1

2 ν1
χT

1
2 ν2

= i(σξMd
)σy and

δr+r′,Md

√
|Md| + 1 =

√
2

∑
〈 1
2r1

1
2r2 |1Md〉, where the

sums run over ν1,2 = ± 1
2 , and recalling that in our no-

tation χ̃s = −iσyχs the non-relativistic correspondence
of eq. (13) becomes transparent: Since the spin struc-
tures of matrix elements are identical in the relativistic
and non-relativistic cases, and due to the similarity of the
corresponding wave functions, eq. (13) in the deuteron’s
center-of-mass system has the same form for both the rel-
ativistic and non-relativistic approaches. Nevertheless, as
seen from eq. (13) even near the threshold, moderate and
relatively high internal momenta p contribute to the in-
tegral, and the numerical results for observables may de-
pend upon details of the deuteron wave function computed
within different approaches. In particular, this might con-
cern the S-wave, which is known to differ within different
approaches, (e.g., crossing the p-axis, where it changes the
sign, or the contribution of negative parts etc.; cf. [17] and
further references therein).

In what follows we compare results obtained with our
BS solution [18] with non-relativistic calculations relying
on Bonn and Paris wave functions. Note that the integral
over p in eq. (13) formally is extended up to infinity. It is
clear that, since the internal momenta of the deuteron in
eq. (13) is also connected with the amplitude of processes
with the φ-meson and virtual nucleons in the final state,
the values of p corresponding to imaginary masses must
be suppressed. We do so by constraining the upper limit
of the p integration to pmax = 3m/4.

3 Discussion of results

In our evaluation of the above equations we use, for de-
scribing the deuteron wave function, our numerical so-
lution of the BS equation [18] in ladder approximation
obtained with a realistic one-boson exchange interaction
which includes π, σ, ω, δ, ρ and η exchanges. The effective
parameters used in the ladder approximation have been
fixed in such a way to obtain a good description of the
NN elastic scattering data and the static properties of
the deuteron [17]. Independent of this set of parameters
related to deuteron properties, the effective coupling con-
stants and the attributed cut-off factors are taken from
the recent analysis [15]. In all subsequent numerical cal-
culations the set B from [15] is used. For this parameter
set the meson exchange term is by far dominating.

In fig. 3 the total cross-section near the threshold is
depicted. The full curve corresponds to our fully relativis-
tic calculations whereas the dashed (dotted) curve rep-
resents results of non-relativistic calculations with Bonn
(Paris) wave functions. It is seen that the relativistic re-
sults are quite similar to those obtained with the Paris
wave function but differ by more than 50% from the ones
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Fig. 3. Total cross-section for the reaction pn → dφ as a
function of the excess energy ∆s1/2 =

√
s − Md − Mφ.

obtained within Bonn potential. This is a direct conse-
quence of the different behavior of the S- and D-waves
in the deuteron with BS and Bonn and Paris potentials.
Remind that BS and Paris wave functions are essentially
the same in a large interval of p, up to p ≈ 1 GeV/c [17],
whereas the Bonn wave function exhibits a different shape
already at p ≥ 0.3 GeV/c. In particular, at p ≥ 0.4 GeV/c
the contribution of the BS and Paris S-waves to the in-
tegral (13) becomes negative and quite large, whereas for
the Bonn wave function the negative contribution starts
at p ∼ 0.5 GeV/c and is smaller in comparison with, e.g.,
the Paris wave function. The shape of our cross-section is
rather similar to the one computed in [13]. However, there
is a difference in the absolute values by roughly 60% for
BS results and 15–20% for the Bonn potential. The first
difference is in the same order of magnitude as the differ-
ence of the previously often used cross-section σ = 0.26
µb deduced from [19] and the published value σ = 0.19
µb [20] for the reaction pp → ppφ at an excess energy of
83 MeV.

References [13,15] show that several sets of parameters
equally well describe the pp → ppφ data. These sets differ
not only by absolute values of parameters but also by the
relative contributions of meson current and the nucleon
current terms. Since in case of the pn → dφ processes
the isospin transition corresponds to ∆I = 0 the meson
exchange diagrams are enhanced by a factor of three in
comparison with the nucleon current terms. This means
that i) the contributions of the nucleon current are sup-
pressed by about one order of magnitude in comparison
with the meson current, and ii) the behavior of the cross-
section and angular distribution in the process pn → dφ is
expected to follow essentially the behavior of the dominat-
ing meson exchange current contribution in the elemen-
tary processes pn → pnφ. The occurrence of the deuteron
wave function only modifies this behavior. This is clearly
seen in fig. 4, where the shape of the angular distribution
is very similar to the distribution found in [15] for the reac-
tion pn → pnφ. At the threshold the distribution is fairly

Fig. 4. Angular distribution in the center-of-mass system for
two values of the excess energy. Lines as in fig. 3.

flat, while with increasing excess energy some forward-
backward peaking becomes visible. This feature depends
upon the parameter set used. For instance, if we were using
the set C of [15], then a slight suppression of the cross-
section would be expected in the forward-backward direc-
tions as predicted for the elementary cross-section [15].
This sensitivity of the predicted angular distribution has
been pointed out in [13,21] as a tool to constrain further
the parameters, if precise data become available.

Let us now discuss the polarization observables. Near
the threshold, in the final state the relative φ − d or-
bital momentum is zero and one has If = 0, Jπ

d = 1+ (
Ld = 0, 2), Jπ

f = Jπ
φ +Jπ

d = 0−, 1−, 2−, where I, L, J and
π are the total isospin, total radial angular momentum,
angular momentum and parity, respectively. Thus from
symmetry constraints, in the initial state the allowed con-
figurations are Ii = 0, Li = 1, 3, 5 · · · and total spin Si = 0.
The conservation law (Ji = Jf) implies Li = 1, so that
Jπ

i = 1−. Since ∆S = 1 and Si = 0 after a spin-flip
transition the most probable deuteron projections are ex-
pected to be Md = ±1, and consequently for the φ-
meson Mφ = ∓1 provided the S-wave in the deuteron
dominates near the threshold. From these transitions in
|TMφMd

s1s2 (s, t)|2 one may form different combinations of
spin observables, which near the threshold behave quite
differently. If one considers, for example, the cross-section
averaged over all final projections M at different initial-
spin projections, then the beam target asymmetry, defined
here as

A =
σ(sp+sn = 1) + σ(sp+sn = −1) − σ(sp+sn = 0)
σ(sp+sn = 1) + σ(sp+sn = −1) + σ(sp+sn = 0)

,

(14)
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Fig. 5. The beam target asymmetry A as a function of the
the excess energy.

is predicted to be −1 near threshold and to increase with
increasing energy. This is in contrast with the asymmetry
defined for the elementary process pp → ppφ which is +1,
as predicted in [15], and decreases with increasing energy.
The energy dependence of the asymmetry (14) is depicted
in fig. 5.

Another interesting polarization observable is the
tensor-analyzing power, which may be defined either for
the final deuteron or for the final meson. For instance, the
deuteron tensor-analyzing power is defined by the cross-
section averaged over all spins but the deuteron:

T20 =
1√
2

σ(Md = 1) + σ(Md = −1) − 2σ(Md = 0)
σ(Md = 1) + σ(Md = −1) + σ(Md = 0)

.

(15)

It is seen from (15) that in line with the above discussed
selection rules, σ(Md = 0) � σ(Md = ±1) and the
deuteron tensor-analyzing power is predicted to be almost
constant, T20 ≈ 1/

√
2, in a large region of the energy ex-

cess. This prediction is illustrated in fig. 6.
In fig. 7 another polarization observable is depicted

defined by

Wzz =
σ(Mφ = +1) − σ(Mφ = −1)
σ(Mφ = +1) + σ(Mφ = −1)

∣∣∣∣
sp=+1/2

, (16)

which characterizes the proton-meson spin-spin correla-
tion. As mentioned above, near the threshold the main
contribution to σ(Mφ = ±1) comes from the deuteron
projections Md = ∓1 and, since in (16) the average over
the initial neutron polarizations is performed, the quan-
tity Wzz is predicted to vanish for the meson exchange
diagrams. A substantial deviation of Wzz from zero would
point to the presence of non-negligible nucleon current
contributions in the φ production process. In fig. 7 it is
seen that there is some weak dependence of Wzz upon the
energy excess. Nevertheless, Wzz remains small indicating
that the polarizations of the incident proton and outgoing
meson are almost uncorrelated.

Fig. 6. Deuteron tensor-analyzing power T20 as a function of
the excess energy.

Fig. 7. p-φ spin-spin correlation Wzz as a function of the excess
energy.

A different situation may occur in the reaction pd →
dφpsp. In this case, if one measures also the polarization
of the spectator proton, one may prepare the polariza-
tion of the initial deuteron in such a way that the quan-
tity Wzz can strongly depend on whether the polariza-
tions of protons are the same or have opposite directions.
Let us discuss this assertion in more detail. Adopting for
pd → dφpsp the spectator mechanism, as depicted in fig. 8,
the invariant amplitude may be expressed through the am-
plitude of the process pn → dφ as follows:

F(sp,Md; sp′ ,Md′ ,Mφ) =
1

2m

∑
sn

T
MφMd′
spsn (pp, pn; pφ, pd′)

×ū(pn, sn)ΨMd
(n, p′)(p̂′ + m)v(p′, sp′). (17)

At first glance, since (p̂′ +m)v(p′, sp′) = 0, the whole am-
plitude F(sp,Md; sp′ ,Md′ ,Mφ) seems to be zero. This
is a usual situation within the BS formalism where one
particle (the spectator proton in our case) is on the mass
shell. In this case the BS amplitude ΨMd

(n, p′) itself con-
tains singularities at p′ 2 = m2, which exactly compen-
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ϕ

d

p

d’

p’

Fig. 8. The diagram for the process p + d = d′ + φ + p′ within
the spectator mechanism.

sate zeros from inverse propagators, so that the final ex-
pression eq. (17) remains finite. Now, from eq. (17) it be-
comes clear that near the threshold the selection rules for
pd → dφpsp reactions are governed by the spin structure
of the amplitude T

MφMd′
spsn (pp, pn; pφ, pd′) of the subpro-

cess pn → dφ. Then, if the spin projection of the initial
deuteron Md = 0, sp′ = 1/2 implies that the spin of the
internal neutron is sn = −1/2. This means that in Wzz

one has allowed spin transitions as in eq. (16) and, conse-
quently, Wzz is predicted to vanish as for the pn → dφ re-
action. For sp′ = −1/2 the selection rules predict that, at
least in the forward direction, the most probable deuteron
final state is that with Md′ = 0 and, from helicity con-
servation, Mφ = 1. Other spin combinations in the final
state are strongly suppressed. Hence, in this case the quan-
tity Wzz is expected to be equal to unity in the threshold
region.

Since we have T
MφMd
s1s2 (s, t) at our disposal, via eq. (1)

any other polarization observable is accessible within our
formalism and the corresponding numerical code.

4 Summary

In summary we present here predictions of polarization
observables for the quasi-free process pn → dφ which are
accessible in forthcoming experiments. Off-shell effects in
the subprocess nN → NN can consistently be dealt with,
if one restricts the treatment onto the by far dominating
meson exchange current. It is the beam target asymme-
try which differs drastically from the one in the reaction
pp → ppφ. The tensor-analyzing power is fairly insensitive
to variations of the excess energy, and the p-φ spin-spin
correlation is very small.

Desirable is an extension of the present treatment to
incorporate the ω- and ρ-meson production, as done, e.g.,
in [13] for evaluations of the total cross-section and angu-
lar distributions. However, as stressed in [22,23], the ele-
mentary amplitude of the πN → ω(ρ)N subprocess can
not be described satisfactorily by one dominating diagram.
Rather, a large set of processes including the excitation of
baryon resonances in the s-channel contribute to the total
cross-section. By virtue of the controversial discussion of
the data basis in [24,25] this deserves clarification of the

elementary subprocess before one can extend our treat-
ment to other vector mesons, with emphasis to the
deuteron in the exit channel.

We are grateful to A.I. Titov for many valuable discussions.
The work is supported in parts by BMBF grant 06DR921 and
the Landau-Heisenberg program.
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